If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x=39
We move all terms to the left:
3x^2+6x-(39)=0
a = 3; b = 6; c = -39;
Δ = b2-4ac
Δ = 62-4·3·(-39)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{14}}{2*3}=\frac{-6-6\sqrt{14}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{14}}{2*3}=\frac{-6+6\sqrt{14}}{6} $
| 3x+5+x+3=2x-7 | | 12x-11=14x-12 | | 32/3x=15 | | C=0.25m+1 | | 6*3.14^2*t=1244 | | 10x+4-8=9-4x | | 40=4+6x | | 4(x-2)-10x=-3x+13 | | (4w+2)(5+w)=0 | | 60+60+(6x+12)=180 | | 1/2x+1/3x=24 | | X+15+x/2+90=180 | | 4/60=x/100 | | y=3*(2)^2+6(2)-8 | | y=3*(-1)^2+6(-1)-8 | | 28/b+7=4 | | y=3(2)^2+6(2)-8 | | -13q=1-16q | | (20+-1y)+y=20 | | 0=-6y^2-11y-8 | | B+n=125 | | y=3(-1)^2+6(-1)-8 | | N+x=125 | | z÷13=650 | | z÷8=650 | | ´x2+x=110 | | 13=2c-8+5c | | 4b-5=-3 | | 5c+8-2c=13 | | 3x=8=12 | | 3(y+15)=2(y+10) | | 11/2x-5+4x-5/2=180 |